当前位置 : 首页 > 明星热门

纯水设备,超纯水系统的常见技术问题,晨兴环保给您解 …

膜元件实际回收率是膜元件实际使用时的回收率。为了降低膜元件的污染速度、保证膜元件的使用寿命,膜元件生产厂家对单支膜元件的实际回收率作了明确规定,要求每支l米长的膜元件实际回收率不要超过18%,但当膜元件用于第二级反渗透纯水设备系统水处理时,则实际回收率不受此限制,允许超过18%。系统回收率是指反渗透设备在实际使用时总的回收率。系统回收率受给水水质、膜元件的数量及排列方式等多种因素的影响,小型反渗透设备由于膜元件的数量少、给水流程短,因而系统回收率普遍偏低,而工业用大型反渗透设备由于膜元件的数量多、给水流程长,所以实际系统回收率一般均在75%以上,有时甚至可以达到90%。在某些情况下,对于小型反渗透设备也要求较高的系统回收率,以免造成水资源的浪费,此时在设计反渗透设备时就需要采取一些不同的对策,最常见的方法是采用浓水部分循环,即反渗透设备的浓水只排放一部分,其余部分循环进入给水泵入口,此时既可保证膜元件表面维持一定的横向流速,又可以达到用户所需要的系统回收率,但切不可通过直接调整给水/浓水进出口阀门来提高系统回收率,如果这样操作,就会造成膜元件的污染速度加快,导致严重后果。一般苦咸水脱盐系统回收率多控制在75%,即浓水浓缩了4倍,当原水含盐量较低时,有时也可采用80%,如原水中某种微溶盐含量高,有时也采用较低的系统回收率以防止结垢。膜元件标准脱盐率为膜元件生产厂家在标准条件下所测得的脱盐率,以海德能公司的低压系列产品为例,CPA2在标准条件下的最低脱盐率为99.2%(平均脱盐率为99.5%),CPA3在标准条件下的最低脱盐率为99.6%(平均脱盐率为99.7%)。膜元件实际脱盐率为膜元件在实际使用时所表现出来的脱盐率,实际脱盐率有时会比标准脱盐率高,但更多情况下要比标准脱盐率低,这是由于标准测试条件与实际使用条件完全不同。在标准测试条件下,其标准测试溶液为氯化钠溶液,膜元件标准脱盐率表现为对氯化钠的脱除率。在实际使用条件下,由于水中各种离子成分不同,温度、平均水通量选取值、系统回收率等均不同于标准测试条件,而这些因素均会影响到膜元件的脱盐率。系统脱盐率为整套反渗透设备所表现出来的脱盐率,同样由于使用条件与标准条件不同,系统脱盐率有别于标准脱盐率,同时由于反渗透设备一般均串联多根膜元件,而装置中每根膜元件的实际使用条件均不同,故系统脱盐率也有别于膜元件实际脱盐率,对于只有1支膜元件的装置,系统脱盐率才等于膜元件实际脱盐率。在反渗透水处理领域,背压指的是产品水侧的压力大于给水侧的压力的情况。如前面介绍,卷式膜元件类似一个长信封状的膜口袋,开口的一边粘接在含有开孔的产品水中心管上。将多个膜口袋卷绕到同一个产品中心管上,使给水水流从膜的外侧流过,在给水压力下,使淡水通过膜进入膜口袋后汇流人产品水中心管内。为了便于产品水在膜袋内流动,在信封状的膜袋内夹有一层产品水导流的织物支撑层;为了使给水均匀流过膜袋表面并给水流以扰动,在膜袋与膜袋之间的给水通道中夹有隔网层。膜口袋的三面是用粘结剂粘接在一起的,如果产品水侧的压力大于给水侧的压力,那么这些粘接线就会破裂而导致膜元件脱盐率的丧失或者明显降低,因此从安全的角度考虑,反渗透系统不能够存在背压。由于反渗透膜过滤是通过压力驱动的,在正常运行时是不会存在背压的,但是如果系统正常或者故障停机,阀门设置或者开闭不当,那么就有可能存在背压,因此必须妥善处理解决背压的问题。配制标准测试溶液的水源为反渗透产水,因而几乎不带杂质,不存在膜元件被污染的问题。在实际使用时,除了二级反渗透系统的进水是以一级反渗透系统的产水作为原水外,其他反渗透系统的进水几乎都是经普通预处理后的原水。尽管预处理工艺去除了其中一部分杂质,但与标准测试条件下所用水源相比,其进水水质仍然较差。所以膜元件设计产水量应该小于标准产水量,此时如仍按标准产水量作为设计产水量,则反渗透膜元件很快就会受到污染,造成膜元件损坏。为了避免上述情况的发生,膜元件生产厂家提供了设计导则,以使设计人员有据可依。设计导则建议应根据不同的进水水源来选取不同的设计产水量。即使在实际使用时按照膜元件生产厂家提供的设计导则使用,但是反渗透膜元件仍然会慢慢受到污染,当然在一段时间后可以通过化学清洗部分恢复其性能,但却很难完全恢复其性能,所以有经验的设计人员在设计时应该考虑到这一问题,此时应该选用能够保证3年后达到设计产水量的给水泵,即需要设计更高压力的给水泵,但系统初始投运时不需要很高的压力就可以达到设计产水量,所以系统在初始运行时给水泵压力富裕,随着时间的推移,压力富裕逐渐减少,因此高压泵后面应设手动调节门来调节给水压力。有些时候可以对给水泵设置变频调节装置,此时可以用变频的方法来实现给水压力的调节。高压泵后面的手动调节门在设置后一般不需要经常调节,在一段时间内基本上是保持在恒定的位置,在系统每次启动时也不需要开闭此阀门。但是如果高压泵后面没有其他阀门,此时每次启动系统时,高压泵的高压水源会直接冲击膜元件,特别是在系统中存在空气时就会产生“水锤”的现象,这样容易造成膜元件的破裂。为了防止上述现象的发生,应该在高压泵后面设电动慢开门,在启动高压泵后慢慢打开电动慢开门,也即慢慢向系统的反渗透膜上加载压力,电动慢开门应该是全开全闭阀门,其全开全闭时间是可以调节的,但一般设定为45~60s。所以从反渗透膜元件的安全角度考虑应该设置电动慢开门。给水进入反渗透系统后分成两路,一路透过反渗透膜表面变成产水,另一路沿反渗透膜表面平行移动并逐渐浓缩,在这些浓缩的水流中包含了大量的盐分,甚至还有有机物、胶体、微生物和细菌、病毒等。在反渗透系统正常运行时,给水/浓水流沿着反渗透膜表面以一定的流速流动,这些污染物很难沉积下来,但是如果反渗透系统停止运行,这些污染物就会立即沉积在膜的表面,对膜元件造成污染。所以要在反渗透系统中设置自动冲洗系统,利用干净的水源对膜元件表面进行停运冲洗,以防止这些污染物的沉积。为了使RO装置能够安全可靠地运行,便于运行过程中的监控,应该装置必要的仪表和控制设备,一般需要装设的表计有温度表、压力表、流量表、pH表、电导率表、氯表、氧化还原电位表等,装设的地点及其作用分述如下。给水温度表,因产水量与温度有关,所以需要监测以便求出“标准化”后的产水量。大型设备应进行记录,另外,温度超过45℃会损坏膜元件,所以对原水加热器系统应设超限报警、超温水自动排放和停运RO的保护。产品水流量表在运行中监测产水量,每段应单独装设,以便于“标准化RO性能数据。产品水流量应有指示、累计和记录,浓水排水流量表在运行中监测排水量,应有指示、累计和记录。使用醋酸纤维素膜元件RO给水必须含有0.1~0.5mg/L残余氯,最大允许含氯量为lmg/L,因此给水必须装设氯表,以指示、记录、和超越报警。药液箱要设液位开关,低液位报警,加酸可采用比例调节或比例积分调节,加阻垢剂等可采用比例调节,加药泵与给水泵之间进行连锁。⑹高压泵出口装有电动慢开门。高压泵启动后,慢开门自动缓慢打开以确保RO膜元件不受水锤破坏,如慢开门发生故障而未能在规定时间内打开,则高压泵出口压力增高,压力开关输出报警信号并经PLC自动停止高压泵的运行。⑺每套RO装置设就地仪表盘一块,盘上装有RO一段、二段产品水、排水的流量表各一块(流量及累积流量值显示),产品水电导率表一块。流量表和电导率表所发出的参数信号送中央控制室进行连续记录,并具有电导率值高报警。就地盘上装有高压泵启动、停止按钮和指示灯,系统紧急停止按钮和指示灯,电动慢开门开、关按钮和指示灯。c.RO装置就地手动启动和运行。当高压泵、计量泵的“自动一关一手动,三位开关扳至“关”位置时,上述设备可在就地手动启动和运行。在任何情况下,都可以通过设置在就地仪表盘上的系统紧急停止按钮,停止RO装置的运行。反渗透系统包括两套RO装置和一套加药系统,每套RO装置配备一台高压泵。当有一台高压泵启动时,加药系统计量泵联锁启动,当两台高压泵都停运时,加药系统计量泵联锁停运,高压泵一台运行一台停运时,计量泵正常工作。⑻关断浓水排放阀,调节浓水减压阀,调节给水泵出口节流阀,打开产品水出口阀,关闭产品水排放阀,直至达到设计的产品水流量和系统回收率。反渗透系统在停止运行后,一般都要自动冲洗一段时间,然后根据停运时间的长短,决定是否需要采取停用保护措施或者采取什么样的停用保护措施。在反渗透系统再次开机时,对于已经采取添加停用保护药剂的系统,应该将这些保护药剂排放出来,然后再通过不带压冲洗把这些保护药剂冲洗干净,最后再启动系统。对于没有采取添加停用保护药剂的系统,此时系统中一般是充满水的状态,但这些水可能已经在系统中存了一定的时间,此时也最好用不带压冲洗的方法把这些水排出后再开机为好。有时,系统中的水不是在充满状态,此时必须通过不带压冲洗的方法排净空气,如果不排净空气,就容易产生“水锤”的现象而损坏膜元件。在运行过程当中,系统的运行条件,如压力、温度、系统回收率和给水浓度可能有变化而引起产品水流量和质量的改变,为了有效地评价系统的性能,需要在相同的条件下比较产品水流量和质量数据,因为不可能总是在相同条件下获得这些数据,因此需要将实际运行状况下的RO性能数据按照恒定的运行条件进行“标准化”,以便评价RO膜的性能。标准化包括产品水流量的“标准化”和盐透过率的“标准化”。如果系统运行条件与初投运时相同,现在理论上所能达到的流量,称标准化的流量。如果系统运行条件与初投运时相同,现在理论上所能达到的脱盐率称标准化的脱盐率。从上述定义可以知道,标准化的参考点是以初投运时(稳定运行或经过24h)的运行数据,或者由反渗透膜元件制造厂商的标准参数做参考,此时反渗透膜基本上没有受到任何污染,今后要判断反渗透是否存在污染以及是否需要清洗,都需要以初投运时的数据来判断,因此,初投运时的数据尤其重要,必须进行记录。过滤材料视进入过滤器(池)的水pH值而不同。使用铝盐(硫酸铝、明矾、氯化铝、聚合硫酸铝、聚合氯化铝)混凝、澄清的水,可用石英砂过滤,经石灰沉淀软化处理。用铁盐(硫酸亚铁、三氯化铁,聚合硫酸铁,聚合氯化铁)混凝处理的水,pH值较高,可用大理石、白云石或无烟煤过滤。在水处理工艺中,活性炭过滤器用于对有机物的吸附和对过量氯(余氯)的吸附去除,对前者去除能力较差,通常为50%,对后者则很强,可以完全脱除余氯,这是由于在对余氯吸附的同时,还有自身被氯化的作用。活性炭的吸附能力曾被用于口服对肠道细菌的吸附而治疗细菌性痢疾,在第一次世界大战中,氯气类毒气作为大规模杀伤性武器被使用,活性炭则是防毒面具中主要的毒气吸附剂,离子交换树脂被广泛应用后,活性炭在化学除盐系统中使用较广,大机组对有机酸的腐蚀敏感,因此配置活性炭床者更多。活性炭吸附水中营养物质,可以成为细菌微生物的温床,微生物膜对水的阻力影响较大,因此,应定期进行反洗去污。如果反洗不能奏效时,应进行灭菌处理。实际上,按照进水浊度安排合理的反冲洗制度更具有实际意义,由于微生物膜与微生物黏泥难于清净,采取空气擦洗是必要的。某热电厂用受严重污染的河水作为原水,水中菌、藻和微生物对滤池污塞严重,虹吸滤池的运行时间和反洗时间持平;活性炭过滤器无法使用,混床被黏泥结成团块无法分层再生。为保证水的产量,将虹吸滤池滤料粒径由1mm左右先后放大到2mm和3~4mm,将混床改成二级阳床与二级阴床除盐,其出水质量虽下降,但是满足了供热的用水量。最终的解决对策是使用了部分自来水,缓解河水污染造成的困扰,因此,当活性炭过滤器由于菌、藻造成污塞时除了加强反洗保证压差在规定范围内之外,灭菌虽属重要,但是更应从源头上解决。在水处理工艺中,在反渗透设备运行中都应根据实际情况做应变处置。在对内蒙古某电厂进行风险评估时,该厂停炉保护仅做热炉放水处理,按照通常情况是远远不够的,但是认可该对策。当电厂人员询问是否应该采取成膜等保护措施时指出,对于地处沙漠与干旱地区的该厂来说,由于当地相对湿度常年低于40%,采取热炉放水已经能起到良好的停炉保护作用,无需采取更多的停炉保护措施,对于活性炭过滤器来说,只要压差合乎规定,CODMn去除率不低于30%,无需更多的维护。软化水处理设备是钠阳离子交换器的俗称,它可把水中钙、镁离子交换除去,使成为对应的钠盐。水中含有钡、锶等离子时,也可经过钠离子交换脱除。因此,下列情况可以对水进行软化处理,以免除结水垢的困扰。1)在水处理系统中原来配置有软化器时,应尽量利用它作为前置过滤和软化防垢,例如某热电厂的热网补充水和蒸发器的用水是软化水,该厂原水是河水,限于资金,反渗透预处理较简单,反渗透器压差增长快,清洗周期短,出水质量差,为此建议考虑。4)经技术经济比较,并经过模拟试验证明,使用软化技术优于阻垢处理者。进口阻垢剂通常为8万元/吨,对于杂质含量不高时,处理费用较高,其防垢效果比软化为差。系统实际运行时,运行压力与设计压力吻合,但系统脱盐率不到90%,工程公司经过与海德能公司技术人员的多次讨论与原因分析,并且在现场对每一支压力容器的产水电导率进行了测试,测试结果表明,装置第一段12支压力容器的产水电导率基本一致,装置第二段6支压力容器的产水电导率基本一致.,并且第一段压力容器的产水电导率均低于第二段压力容器的产水电导率,符合反渗透产水的一般规律,从而排除了某些压力容器内存在密封圈泄漏的可能性。在系统实际运行前的冲洗阶段即发现产水流量很大,在系统实际运行时,系统脱盐率很低,几乎无脱除效果,工程公司在现场对每一支压力容器的产水电导率进行了测试,测试结果表明,所有压力容器的产水电导率均很高,并且第一段压力容器的产水电导率基本与第二段压力容器的产水电导率相同,因而认为压力容器内存在密封圈泄漏的可能性。为了确认是否存在密封圈泄漏,现场决定首先拆卸其中一套装置中的膜元件进行验证,但随即发现,该套装置中几乎所有膜元件的中心管(产水管)均出现了碎裂,不言而喻,中心管的碎裂造成了系统的泄漏。膜生产厂家随即派出技术人员去现场了解情况,并收集代表性样品送到公司总部进行分析,分析结果表明,中心管的碎裂是由于用户在安装时使用了不恰当的润滑剂,该润滑剂与由高分子材料制成的膜元件中心管发生了反应,同时由于安装时的应力作用,造成了膜元件中心管的破裂。在系统实际运行时,系统产水量和脱盐率均能完全达到要求,在现场对每一支压力容器的产水电导率进行了测试,测试结果表明,所有压力容器的产水电导率均合格,因而认为整套系统运行正常。在该系统运行1年后,尽管系统段间压力降也几乎没有增加,但还是决定对其进行保护性清洗,为了确认是否存在可见的污染物,现场决定首先拆卸其中一套装置中的膜元件进行外观检查,但随即发现,该套装置中已经有某些膜元件的玻璃钢外皮出现了裂纹,有些膜元件的端板与膜元件主体连接处出现裂纹甚至脱落,但并没有造成系统产水量和脱盐率的明显变化。膜生产厂家随即派出技术人员去现场了解情况,该装置尽管采用了进口的膜元件和压力容器,但在安装时并没有按照厂家的要求在膜元件与压力容器的连接处安装相应的垫片,同时系统中反渗透入口处也没有安装电动慢开门,在系统启动时,也没有进行低压冲洗排气,因而造成高压力的给水瞬间加载到膜元件上,造成了“水锤”的现象,同时由于在系统启动时,没有进行低压冲洗排气,残留的空气无法排出,被压缩在压力容器的出口端,因而在系统停运时,膜元件又被反推回来,造成了膜元件在系统内来回窜动。根据膜元件生产厂家的建议,现场重新安装电动慢开门和相应的垫片,在系统启动前均进行低压冲洗,并有效排除空气,消除了造成“水锤”的条件,该系统再运行已经多年,均没有发生破裂的现象。

栏目列表

广告位